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1. Linear Algebra 
 

1.1 Let  be the vector space formed by all square matrices [2 x 2]; 
also consider the linear transformation 

 given by transverse of  

A. Calculate a basis for  such that the transformation of T is 
represented by a diagonal matrix. What are the possible values for the 
diagonal? 

1.2 Demonstrate that the compound space for all polynomials (with sum and 
standard multiplication) is a vector space. Also, determine what the 
dimension of the vector space of polynomials is. 

1.3  Find a unitary vector on  that is orthogonal to vectors [2, 4, 8] and [3, 
9, 27] 

 

2. Calculus 
 

2.1 Calculate the derivative of the function  with respect to x. 

2.2 Provide an example of a non-bound succession of real numbers  with at 
least two accumulation points. 
 
2.3 Demonstrate Euler’s theorem on homogeneous functions. A function 

 is homogenous of grade p if for any parameter  you have: 
 

 
 

Demonstrate that if  is homogenous of grade p, then: 
 

 
 



3. Optional Problems 

3.1 Demonstrate that each periodic rational function  is constant. 
3.2 Calculate what the fundamental group of the projective planar is  
3.3 Determine if there are non-abelian groups with a prime number of elements. 
3.4 Let X be a locally connected topological space. Consider an open U of X and a 

connected component C of U. Demonstrate that  


