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Lecture 1: Metric and Ultrametric Embedding

Themes of Lecture 1 are: metric projection and inducing a hierarchy, hence an

ultrametric. Using Correspondence Analysis and agglomerative hierarchical

clustering. Topics are as follows.

1. Examples, using Casablanca movie.

2. Metrics, clouds of points, masses, inertia.

3. Factors, decomposition of inertia, contributions, dual spaces.

4. Hierarchical agglomerative clustering

5. Minimum variance agglomerative hierarchical clustering criterion.
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Casablanca Movie

• 77 scenes in the movie. I use the filmscript. Here I use 12 attributes (metadata,

characters, locations): Int(erior), Ext(erior), Day, Night, Ilsa, Rick, Renault,

Strasser, Laszlo, Other (minor characters), Rick’s Café, Elsewhere.

• Example of three scenes, 12–14, follows.

INT EXT Day Night Ilsa Rick Renault Strasser Laszlo Other Cafe Elsewhere

12 0 1 1 0 0 0 6 8 0 5 0 1

13 0 1 0 1 0 0 0 0 0 0 1 0

14 1 0 0 1 0 0 0 0 0 10 1 0
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Basics

• Observations × variables matrix.

• Through display and through quantitative measures, investigate relationships

between observations, and between variables.

• Similar in these objectives to principal components analysis, multidimensional

scaling, Kohonen self-organizing feature map, and others.

• Correspondence analysis is often used in conjunction with clustering.

• Input data, and input data coding, are the major issues which distinguish

correspondence analysis from other algorithmically-similar (or alternative

algorithmic) methods. (Principal components analysis, multidimensional

scaling; Latent Semantic Indexing.)
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Data

• Matrix X defines a set of n vectors in m-dimensional space:

xi = {xi1, xi2, . . . , xim} for 1 ≤ i ≤ n.

• We have: xi ∈ IRm

• Matrix X also defines a set of m column vectors in n-dimensional space:

xj = {x1j , x2j , . . . , xnj} for 1 ≤ j ≤ m.

• We have: xj ∈ IRn

• By convention we usually take the space of row points, i.e. IRm, as X; and the

space of column points, i.e. IRn, as the transpose of X , i.e. X ′ or Xt.

• The row points define a cloud of n points in IRm.

• The column points define a cloud of m points in IRn.
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Next topic: Metrics in Data Analysis. Euclidean, Chi Squared.
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Metrics

• The notion of distance is crucial, since we want to investigate relationships

between observations and/or variables.

• Recall: x = {3, 4, 1, 2}, y = {1, 3, 0, 1}, then: scalar product

〈x, y〉 = 〈y, x〉 = x′y = xy′ = 3× 1 + 4× 3 + 1× 0 + 2× 1.

• Euclidean norm: ‖x‖2 = 3× 3 + 4× 4 + 1× 1 + 2× 2.

• Euclidean distance: d(x, y) = ‖x− y‖. The squared Euclidean distance is:

(3− 1)2 + (4− 3)2 + (1− 0)2 + (2− 1)2

• Orthogonality: x is orthogonal to y if 〈x, y〉 = 0.

• Distance is symmetric (d(x, y) = d(y, x)), positive (d(x, y) ≥ 0), and definite

(d(x, y) = 0 =⇒ x = y).
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Metrics (cont’d.)

• Any symmetric, positive, definite matrix M defines a generalized Euclidean

space. Scalar product is 〈x, y〉M = x′My, norm is ‖x‖2 = x′Mx, and

Euclidean distance is d(x, y) = ‖x− y‖M .

• Classical case: M = In, the identity matrix.

• Normalization to unit variance: M is diagonal matrix with ith diagonal term

1/σ2
i .

• Mahalanobis distance: M is inverse variance-covariance matrix.

• Next topic: Scalar product defines orthogonal projection.
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Metrics (cont’d.)

• Projected value, projection, coordinate: x1 = (x′Mu/u′Mu)u. Here x1 and u

are both vectors.

• Norm of vector x1 = (x′Mu/u′Mu)‖u‖ = (x′Mu)/‖u‖.

• The quantity (x′Mu)/(‖x‖‖u‖) can be interpreted as the cosine of the angle a

between vectors x and u.
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Metrics (cont’d.)

• Consider the case of centred n-valued coordinates or variables, xi.

• The sum of variable vectors is a constant, proportional to the mean variable.

• Therefore the centred vectors lie on a hyperplane H , or a sub-space, of

dimension n− 1.

• Consider a probability distribution p defined on I , i.e. for all i we have pi > 0

(note: > 0 to avoid inconvenience of lower dim. subspace) and
∑

i∈I
pi = 1.

• Covariance matrix: MpI , diagonal matrix with diagonal elements consisting of

the p terms.

• Have: x′MpIx =
∑

i∈I
pix

2
i = var(x); and

x′MpI y =
∑

i∈I
pixiyi = cov(x, y).
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Objectives of PCA, Principal Components Analysis

• dimensionality reduction;

• the determining of linear combinations of variables;

• feature selection: the choosing of the most useful variables;

• visualization of multidimensional data;

• identification of underlying variables;

• identification of groups of objects or of outliers.
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Least Squares Optimal Projection of Points

• Plot of 3 points in IR2 (see following slides).

• PCA: determine best fitting axes.

• Examples follow.

• Note: optimization means either (i) closest axis to points, or (ii) maximum

elongation of projections of points on the axis.

• This follows from Pythagoras’s theorem: x2 + y2 = z2. Call z the distance

from the origin to a point. Let x be the distance of the projection of the point

from the origin. Then y is the perpendicular distance from the axis to to the

point.

• Minimizing y is the same as maximizing x (because z is fixed).
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Examples of Optimal Projection









1 2

2 4

3 5






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Questions We Will Now Address

• How is the PCA of an n×m matrix related to the PCA of the transposed

m× n matrix?

• How may the new axes derived – the principal components – be said to be linear

combinations of the original axes?

• How may PCA be understood as a series expansion?

• In what sense does PCA provide a lower-dimensional approximation to the

original data?
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PCA Algorithm

• The projection of vector x onto axis u is y = x
′Mu

‖u‖M
u

• I.e. the coordinate of the projection on the axis is x′Mu/‖u‖M .

• This becomes x′Mu when the vector u is of unit length.

• The cosine of the angle between vectors x and y in the usual Euclidean space is

x′y/‖x‖‖y‖.

• That is to say, we make use of the triangle whose vertices are the origin, the

projection of x onto y, and vector x.

• The cosine of the angle between x and y is then the coordinate of the projection

of x onto y, divided by the – hypotenuse – length of x.

• The correlation coefficient between two vectors is then simply the cosine of the

angle between them, when the vectors have first been centred (i.e. x− g and

y − g are used, where g is the overall centre of gravity).
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✩
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PCA Algorithm (Cont’d.)

• X = {xij}
• In IRm, the space of objects, PCA searches for the best-fitting set of orthogonal

axes to replace the initially-given set of m axes in this space.

• An analogous procedure is simultaneously carried out for the dual space, IRn.

• First, the axis which best fits the objects/points in IRm is determined.

• If u is this vector, and is of unit length, then the product Xu of n×m matrix

by m× 1 vector gives the projections of the n objects onto this axis.

• The sum of squared projections of points on the new axis, for all points, is

(Xu)′(Xu).

• Such a quadratic form would increase indefinitely if u were arbitrarily large, so

u is taken to be of unit length, i.e. u′u = 1.

• We seek a maximum of the quadratic form u′Su (where S = X ′X) subject to
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✩

✪

the constraint that u′u = 1.

• This is done by setting the derivative of the Lagrangian equal to zero.

• Differentiation of u′Su− λ(u′u− 1) where λ is a Lagrange multiplier gives

2Su− 2λu.

• The optimal value of u (let us call it u1) is the solution of Su = λu.

• The solution of this equation is well-known: u is the eigenvector associated

with the eigenvalue λ of matrix S.

• Therefore the eigenvector of X ′X , u1, is the axis sought, and the

corresponding largest eigenvalue, λ1, is a figure of merit for the axis, – it

indicates the amount of variance explained by the axis.

• The second axis is to be orthogonal to the first, i.e. u′u1 = 0.

• The second axis satisfies the equation

u′X ′Xu− λ2(u
′u− 1)− µ2(u

′u1) where λ2 and µ2 are Lagrange

multipliers.
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✩
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• Differentiating gives 2Su− 2λ2u− µ2u1.

• This term is set equal to zero. Multiplying across by u′
1 implies that µ2 must

equal 0.

• Therefore the optimal value of u, u2, arises as another solution of Su = λu.

• Thus λ2 and u2 are the second largest eigenvalue and associated eigenvector of

S.

• The eigenvectors of S = X ′X , arranged in decreasing order of corresponding

eigenvalues, give the line of best fit to the cloud of points, the plane of best fit,

the three-dimensional hyperplane of best fit, and so on for higher-dimensional

subspaces of best fit.

• X ′X is referred to as the sums of squares and cross products matrix.
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✩
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Eigenvalues

• Eigenvalues are decreasing in value.

• λi = λi′? Then equally privileged directions of elongation have been found.

• λi = 0? Space is actually of dimensionality less than expected. Example: in

3D, points actually lie on a plane.

• Since PCA in IRn and in IRm lead respectively to the finding of n and of m

eigenvalues, and since in addition it has been seen that these eigenvalues are

identical, it follows that the number of non-zero eigenvalues obtained in either

space is less than or equal to min(n,m).

• The eigenvectors associated with the p largest eigenvalues yield the best-fitting

p-dimensional subspace of IRm. A measure of the approximation is the

percentage of variance explained by the subspace
∑

k≤p
λk/

∑n

k=1
λk

expressed as a percentage.
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✩
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Dual Spaces

• In the dual space of attributes, IRn, a PCA may equally well be carried out.

• For the line of best fit, v, the following is maximized: (X ′v)′(X ′v) subject to

v′v = 1.

• In IRm we arrived at X ′Xu1 = λ1u1.

• In IRn, we have XX ′v1 = µ1v1.

• Premultiplying the first of these relationships by X yields

(XX ′)(Xu1) = λ1(Xu1).

• Hence λ1 = µ1 because we have now arrived at two eigenvalue equations

which are identical in form.

• Relationship between the eigenvectors in the two spaces: these must be of unit

length.
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✪

• Find: v1 = 1√
λ1

Xu1.

• λ > 0 since if λ = 0 eigenvectors are not defined.

• For λk: vk = 1√
λk

Xuk

• And: uk = 1√
λk

X ′vk

• Taking Xuk =
√
λk vk, postmultiplying by u′

k , and summing gives:

X
∑n

k=1
uku

′
k =

∑n

k=1

√
λk vku

′
k.

• LHS gives the identity matrix (due to orthogonality of eigenvectors). Hence:

• X =
∑n

k=1

√
λk vku

′
k

• This is termed: Karhunen-Loève expansion or transform.

• We can approximate the data, X , by choosing some eigenvalues/vectors only.
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✫

✩
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Linear Combinations

• The variance of the projections on a given axis in IRm is given by (Xu)′(Xu),

which by the eigenvector equation, is seen to equal λ.

• In some software packages, the eigenvectors are rescaled so that
√
λu and√

λv are used instead of u and v. In this case, the factor
√
λu gives the new,

rescaled projections of the points in the space IRn (i.e.
√
λu = X ′v).

• The coordinates of the new axes can be written in terms of the old coordinate

system. Since u = 1√
λ
X ′v each coordinate of the new vector u is defined as a

linear combination of the initially-given vectors:

uj =
∑n

i=1
1√
λ
vixij =

∑n

i=1
cixij (where i ≤ j ≤ m and xij is the (i, j)th

element of matrix X).

• Thus the jth coordinate of the new vector is a synthetic value formed from the

jth coordinates of the given vectors (i.e. xij for all 1 ≤ i ≤ n).
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Normalization or Standardization

• Let rij be the original measurements.

• Then define: xij =
rij−rj
sj

√
n

• rj = 1
n

∑n

i=1
rij

• s2j = 1
n

∑n

i=1
(rij − rj)

2

• Then the matrix to be diagonalized, X ′X , is of (j, k)th term:

ρjk =
∑n

i=1
xijxik = 1

n

∑n

i=1
(rij − rj)(rik − rk)/sjsk

• This is the correlation coefficient between variables j and k.

• Have distance

d2(j, k) =
∑n

i=1
(xij − xik)

2 =
∑n

i=1
x2ij +

∑n

i=1
x2ik − 2

∑n

i=1
xijxik

• First two terms both yield 1. Hence:

• d2(j, k) = 2(1− ρjk)
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✩
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• Thus the distance between variables is directly proportional to the correlation

between them.

• For row points (objects, observations):

d2(i, h) =
∑

j
(xij − xhj)

2 =
∑

j
(
rij−rhj√

nsj
)2 = (ri − rh)

′M(ri − rh)

• ri and rh are column vectors (of dimensions m× 1) and M is the m×m

diagonal matrix of jth element 1/ns2j .

• Therefore d is a Euclidean distance associated with matrix M .

• Note that the row points are now centred but the column points are not:

therefore the latter may well appear in one quadrant on output listings.
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Implications of Standardization

• Analysis of the matrix of (j, k)th term ρjk as defined above is PCA on a

correlation matrix.

• The row vectors are centred and reduced.

• Centring alone used, and not the rescaling of the variance: matrix of (j, k)th

term cjk = 1
n

∑n

i=1
(rij − rj)(rik − rk)

• In this case we have PCA of the variance-covariance matrix.

• If we use no normalization, we have PCA of the sums of squares and

cross-products matrix. That was what we used to begin with.

• Usually it is best to carry out analysis on correlations.
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Next topic: Introducing the Chi Squared Distance

used for Correspondence Analysis
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Metrics (cont’d.)

• Use of metric MpI on I is associated with the following χ2 distance relative to

centre pI .

• This new distance is a generalized Euclidean M1/pI metric.

• Let both pI and rI be probability densities.

• Then: ‖pIJ − qIJ‖2qIJ =
∑

(i,j)∈I×J
(pij − pipj)

2/pipj .

• Link with χ2 statistic: let pIJ be a data table of probabilities derived from

frequencies or counts. pIJ = {pij |i ∈ I, j ∈ J}.

• Marginals of this table are pI and pJ . Consider independence of effects where

the data table is qIJ = pIpJ .

• Then the χ2 distance of centre qIJ between the densities pIJ and qIJ is

‖pIJ − qIJ‖2qIJ =
∑

(i,j)∈I×J
(pij − pipj)

2/pipj .
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• With the coefficient
√
n, this is the quantity which can be assessed with a χ2

test with n− 1 degrees of freedom.

• The χ2 distance is used in correspondence analysis.

• Clearly, under appropriate circumstances (when pI = pJ = constant) then it

becomes a classical Euclidean distance.
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Next Topic: Close Parallels between Data Analysis

and Classical Mechanics
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Input data table, marginals, and masses

• The given contingency table data are denoted

kIJ = {kIJ(i, j) = k(i, j); i ∈ I, j ∈ J}.

• We have k(i) =
∑

j∈J
k(i, j). Analogously k(j) is defined, and

k =
∑

i∈I,j∈J
k(i, j).

• From frequencies to probabilities:

fIJ = {fij = k(i, j)/k; i ∈ I, j ∈ J} ⊂ IRI×J , similarly fI is defined as

{fi = k(i)/k; i ∈ I, j ∈ J} ⊂ IRI , and fJ analogously.

• The conditional distribution of fJ knowing i ∈ I , also termed the jth profile

with coordinates indexed by the elements of I , is

f i
J = {f i

j = fij/fi = (kij/k)/(ki/k); fi 6= 0; j ∈ J} and likewise for f j
I .
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Clouds of points, masses, and inertia

• Moment of inertia of a cloud of points in a Euclidean space, with both distances

and masses defined: M2(NJ (I)) =
∑

i∈I
fi‖f i

J − fJ‖2fJ =
∑

i∈I
fiρ

2(i).

• Here: ρ is the Euclidean distance from the cloud centre, and fi is the mass of

element i.

• The mass is the marginal distribution of the input data table.

• Correspondence analysis is, as will be seen, a decomposition of the inertia of a

cloud of points, endowed with masses.
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Inertia and Distributional Equivalence

• Another expression for inertia: M2(NJ (I)) =M2(NI(J)) =

‖fIJ − fIfJ‖2fIfJ =
∑

i∈I,j∈J
(fij − fifj)

2/fifj .

• The term ‖fIJ − fIfJ‖2fIfJ is the χ2 metric between the probability

distribution fIJ and the product of marginal distributions fIfJ , with as centre

of the metric the product fIfJ .

• Principle of distributional equivalence: Consider two elements j1 and j2 of J

with identical profiles: i.e. f j1
I = f j2

I . Consider now that elements (or

columns) j1 and j2 are replaced with a new element js such that the new

coordinates are aggregated profiles, fijs = fij1 + fij2 , and the new masses are

similarly aggregated: fijs = fij1 + fij2 . Then there is no effect on the

distribution of distances between elements of I . The distance between elements

of J , other than j1 and j2 is naturally not modified.
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Inertia and Distributional Equivalence (Cont’d.)

• The principle of distributional equivalence leads to representational

self-similarity: aggregation of rows or columns, as defined above, leads to the

same analysis. Therefore it is very appropriate to analyze a contingency table

with fine granularity, and seek in the analysis to merge rows or columns,

through aggregation.
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Factors

• Correspondence Analysis produces an ordered sequence of pairs, called factors,

(Fα, Gα) associated with real numbers called eigenvalues 0 ≤ λα ≤ 1.

• We denote Fα(I) the value of the factor of rank α for element i of I; and

similarly Gα(J) is the value of the factor of rank α for element j of J .

• We see that F is a function on I , and G is a function on J .

• The number of eigenvalues and associated factor couples is:

α = 1, 2, . . . , N = inf(| I | −1, | J | −1), where | . | denotes set cardinality.
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✩

✪

Properties of factors

•
∑

i∈I
fiFα(i) = 0;

∑

j∈J
fjGα(j) = 0

•
∑

i∈I
fiF

2
α(i) = λα;

∑

j∈J
fjG

2
α(j) = λα

•
∑

i∈I
fiFα(i)Fβ(i) = δαβ

•
∑

j∈J
fjGα(j)Gβ(j) = δαβ

• Notation: δαβ = 0 if α 6= β and = 1 if α = β.

• Normalized factors: on the sets I and J , we next define the functions φI and

ψJ of zero mean, of unit variance, pairwise uncorrelated on I (resp. J), and

associated with masses fJ (resp. fI ).

•
∑

i∈I
fiφα(i) = 0;

∑

j∈J
fjψα(j) = 0

•
∑

i∈I
fiφ

2
α(i) = 1;

∑

j∈J
fjψ

2
α(j) = 1

•
∑

i∈I
fiφα(i)φβ(i) = δαβ ;

∑

j∈J
fjψα(j)ψβ(j) = δαβ
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• Between unnormalized and normalized factors, we have the following relations.

• φα(i) = λ
− 1

2
α Fα(i) ∀i ∈ I, ∀α = 1, 2, . . . N

• ψα(j) = λ
− 1

2
α Gα(j) ∀j ∈ J, ∀α = 1, 2, . . . N

• The moment of inertia of the clouds NJ (I) and NI(J) in the direction of the α

axis is λα.
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Forward transform

• Have that the χ2 metric is defined in direct space, i.e. space of profiles.

• The Euclidean metric is defined for the factors.

• We can characterize correspondence analysis as the mapping of a cloud in χ2

space to Euclidean space.

• Distances between profiles are as follows.

• ‖f i
J − f i′

J ‖2fJ =
∑

j∈J

(

f i
j − f i′

j

)2

/fj =
∑

α=1..N
(Fα(i)− Fα(i

′))
2

• ‖f j
I − f j′

I ‖2fI =
∑

i∈I

(

f j
i − f j′

i

)2

/fi =
∑

α=1..N
(Gα(j)−Gα(j

′))
2

• Norm, or distance of a point i ∈ NJ (I) from the origin or centre of gravity of

the cloud NJ (I), is as follows.

• ρ2(i) = ‖f i
J − fJ‖2fJ =

∑

α=1..N
F 2
α(i)

ρ2(j) = ‖f j
I − fI‖2fI =

∑

α=1..N
F 2
α(j)
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Inverse transform

• The correspondence analysis transform, taking profiles into a factor space, is

reversed with no loss of information as follows ∀(i, j) ∈ I × J .

• fij = fifj

(

1 +
∑

α=1..N
λ
− 1

2
α Fα(i)Gα(j)

)

• For profiles we have the following.

• f j
i = fi

(

1 +
∑

α
λ
− 1

2
α Fα(i)Gα(j)

)

• f i
j = fj

(

1 +
∑

α
λ
− 1

2
α Fα(i)Gα(j)

)
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Decomposition of inertia

• The distance of a point from the centre of gravity of the cloud is as follows.

• ρ2(i) = ‖f i
J − fJ‖2 =

∑

j∈J

(

f i
j − fj

)2
/fj

• Decomposition of the cloud’s inertia is as follows.

• M2(NJ (I)) =
∑

α=1..N
λα =

∑

i∈I
fiρ

2(i)

• In greater detail, we have the following for this decomposition.

• λα =
∑

i∈I
fiF

2
α(i) and ρ2(i) =

∑

α=1..N
F 2
α(i)
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Relative and absolute contributions

• fiρ
(i) is the absolute contribution of point i to the inertia of the cloud,

M2(NJ (I)), or the variance of point i.

• fiF
2
α(i) is the absolute contribution of point i to the moment of inertia λα.

• fiF
2
α(i)/λα is the relative contribution of point i to the moment of inertia λα.

(Often denoted CTR.)

• F 2
α(i) is the contribution of point I to the χ2 distance between i and the centre

of the cloud NJ (I).

• cos2 a = F 2
α(i)/ρ

2(i) is the relative contribution of the factor α to point i.

(Often denoted COR.)

• Based on the latter term, we have:
∑

α=1..N
F 2
α(i)/ρ

2(i) = 1.

• Analogous formulas hold for the points j in the cloud NI(J).
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Reduction of dimensionality

• Interpretation is usually limited to the first few factors.

• Decomposition of inertia is usually far less decisive than (cumulative)

percentage variance explained in principal components analysis. One reason for

this: in CA, often recoding tends to bring input data coordinates closer to

vertices of hypercube.

• QLT(i) =
∑

α=1..N′ cos
2 a, where angle a has been defined above (previous

section) and where N ′ < N is the quality of representation of element i in the

factor space of dimension N ′.

• INR(I) = ρ2(i) is the distance of element I from the centre of gravity of the

cloud.

• POID(I) = fi is the mass or marginal frequency of the element i.
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Interpretation of results

1. Projections onto factors 1 and 2, 2 and 3, 1 and 3, etc. of set I , set J , or both

sets simultaneously.

2. Spectrum of non-increasing values of eigenvalues.

3. Interpretation of axes. We can distinguish between the general (latent semantic,

conceptual) meaning of axes, and axes which have something specific to say

about groups of elements. Usually contrast is important: what is found to be

analogous at one extremity versus the other extremity; or oppositions or

polarities.

4. Factors are determined by how much the elements contribute to their dispersion.

Therefore the values of CTR are examined in order to identify or to name the

factors (for example, with higher order concepts). (Informally, CTR allows us

to work from the elements towards the factors.)

5. The values of COR are squared cosines, which can be considered as being like
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correlation coefficients. If COR(i, α) is large (say, around 0.8) then we can say

that that element is well explained by the axis of rank α. (Informally, COR

allows us to work from the factors towards the elements.)
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Analysis of the dual spaces

• We have the following.

• Fα(i) = λ
− 1

2
α

∑

j∈J
f i
jGα(j) for α = 1, 2, . . . N ; i ∈ I

• Gα(j) = λ
− 1

2
α

∑

i∈I
f j
i Fα(i) for α = 1, 2, . . . N ; j ∈ J

• These are termed the transition formulas. The coordinate of element i ∈ I is the

barycentre of the coordinates of the elements j ∈ J , with associated masses of

value given by the coordinates of f i
j of the profile f i

J . This is all to within the

λ
− 1

2
α constant.
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Analysis of the dual spaces (cont’d.)

• We also have the following.

• φα(i) = λ
− 1

2
α

∑

j∈J
f i
jψα(j)

• ψα(j) = λ
− 1

2
α

∑

i∈I
f j
i φα(i)

• This implies that we can pass easily from one space to the other. I.e. we carry

out the diagonalization, or eigen-reduction, in the more computationally

favourable space which is usually IRJ . In the output display, the barycentric

principle comes into play: this allows us to simultaneously view and interpret

observations and attributes.
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Supplementary elements

• Overly-preponderant elements (i.e. row or column profiles), or exceptional

elements (e.g. a sex attribute, given other performance or behavioural attributes)

may be placed as supplementary elements.

• This means that they are given zero mass in the analysis, and their projections

are determined using the transition formulas.

• This amounts to carrying out a correspondence analysis first, without these

elements, and then projecting them into the factor space following the

determination of all properties of this space.
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Summary

Space IRm:

1. n row points, each of m coordinates.

2. The jth coordinate is xij/xi.

3. The mass of point i is xi.

4. The χ2 distance between row points i and k is:

d2(i, k) =
∑

j
1
xj

(
xij

xi
− xkj

xk
)2.

Hence this is a Euclidean distance, with respect

to the weighting 1/xj (for all j), between profile

values xij/xi etc.

5. The criterion to be optimized: the weighted sum

of squares of projections, where the weighting

is given by xi (for all i).
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Space IRn:

1. m column points, each of n coordinates.

2. The ith coordinate is xij/xj .

3. The mass of point j is xj .

4. The χ2 distance between column points g and j is:

d2(g, j) =
∑

i
1
xi
(
xig

xg
− xij

xj
)2.

Hence this is a Euclidean distance, with respect

to the weighting 1/xi (for all i), between profile

values xig/xg etc.

5. The criterion to be optimized: the weighted sum

of squares of projections, where the weighting

is given by xj (for all j).
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Data Input Coding in Correspondence Analysis
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Scores 5 students in 6 subjects

CSc CPg CGr CNw DbM SwE

A 54 55 31 36 46 40

B 35 56 20 20 49 45

C 47 73 39 30 48 57

D 54 72 33 42 57 21

E 18 24 11 14 19 7

CSc CPg CGr CNw DbM SwE

mean profile: .18 .24 .12 .12 .19 .15

profile of D: .19 .26 .12 .15 .20 .08

profile of E: .19 .26 .12 .15 .20 .08

Scores (out of 100) of 5 students, A–E, in 6 subjects. Subjects: CSc: Computer

Science Proficiency, CPg: Computer Programming, CGr: Computer Graphics, CNw:

Computer Networks, DbM: Database Management, SwE: Software Engineering.
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Scores 5 students in 6 subjects (Cont’d.)

• Correspondence analysis highlights the similarities and the differences in the

profiles.

• Note that all the scores of D and E are in the same proportion (E’s scores are

one-third those of D).

• Note also that E has the lowest scores both in absolute and relative terms in all

the subjects.

• D and E have identical profiles: without data coding they would be located at

the same location in the output display.

• Both D and E show a positive association with CNw (computer networks) and a

negative association with SwE (software engineering) because in comparison

with the mean profile, D and E have, in their profile, a relatively larger

component of CNw and a relatively smaller component of SwE.
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• We need to clearly differentiate between the profiles of D and E, which we do

by doubling the data.

• Doubling: we attribute two scores per subject instead of a single score. The

“score awarded”, k(i, j+), is equal to the initial score. The “score not

awarded”, k(i, j−), is equal to its complement, i.e., 100− k(i, j+).

• Lever principle: a “+” variable and its corresponding “−” variable lie on the

opposite sides of the origin and collinear with it.

• And: if the mass of the profile of j+ is greater than the mass of the profile of j−

(which means that the average score for the subject j was greater than 50 out of

100), the point j+ is closer to the origin than j−.

• We will find that except in CPg, the average score of the students was below 50

in all the subjects.



Lecture 1: Metric and Ultrametric Embedding. Slide 59/103.✬

✫

✩

✪

Data coding: Doubling

CSc+ CSc- CPg+ CPg- CGr+ CGr- CNw+ CNw- DbM+ DbM- SwE+ SwE-

A 54 46 55 45 31 69 36 64 46 54 40 60

B 35 65 56 44 20 80 20 80 49 51 45 55

C 47 53 73 27 39 61 30 70 48 52 57 43

D 54 46 72 28 33 67 42 58 57 43 21 79

E 18 82 24 76 11 89 14 86 19 81 7 93

Doubled table of scores derived from previous table. Note: all rows now have the

same total.
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F
ac

to
r 

2 
(1

8%
 in

er
tia

)

-0.4 -0.2 0.0 0.2 0.4

-0
.2

-0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

A

B C

D

E

CSc+

CSc-

CPg+

CPg-

CGr+

CGr-

CNw+

CNw-

DbM+

DbM-

SwE+

SwE-



Lecture 1: Metric and Ultrametric Embedding. Slide 61/103.✬

✫

✩

✪

Next Topic: Hierarchical Clustering
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Hierarchical clustering

• Hierarchical agglomeration on n observation vectors, i ∈ I , involves a series of

1, 2, . . . , n− 1 pairwise agglomerations of observations or clusters, with the

following properties.

• A hierarchy H = {q|q ∈ 2I} such that:

1. I ∈ H

2. i ∈ H ∀i
3. for each q ∈ H, q′ ∈ H : q ∩ q′ 6= ∅ =⇒ q ⊂ q′ or q′ ⊂ q

• An indexed hierarchy is the pair (H, ν) where the positive function defined on

H , i.e., ν : H → IR+, satisfies:

1. ν(i) = 0 if i ∈ H is a singleton

2. q ⊂ q′ =⇒ ν(q) < ν(q′)

• Function ν is the agglomeration level.
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• Take q ⊂ q′, let q ⊂ q′′ and q′ ⊂ q′′, and let q′′ be the lowest level cluster for

which this is true. Then if we define D(q, q′) = ν(q′′), D is an ultrametric.

• Recall: Distances satisfy the triangle inequality d(x, z) ≤ d(x, y) + d(y, z).

An ultrametric satisfies d(x, z) ≤ max(d(x, y), d(y, z)). In an ultrametric

space triangles formed by any three points are isosceles with small base, or

equilateral. An ultrametric is a special distance associated with rooted trees.

Ultrametric topology is used in other fields also – in quantum mechanics,

numerical optimization, number theory, and algorithmic logic.

• In practice, we start with a Euclidean distance or other dissimilarity, use some

criterion such as minimizing the change in variance resulting from the

agglomerations, and then define ν(q) as the dissimilarity associated with the

agglomeration carried out.
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Minimum variance agglomeration

• For Euclidean distance inputs, the following definitions hold for the minimum

variance or Ward error sum of squares agglomerative criterion.

• Coordinates of the new cluster center, following agglomeration of q and q′,

where mq is the mass of cluster q defined as cluster cardinality, and (vector) q

denotes using overloaded notation the center of (set) cluster q:

q′′ = (mqq +mq′q
′)/(mq +mq′).

• Following the agglomeration of q and q′, we define the following dissimilarity:

(mqmq′)/(mq +mq′)‖q − q′‖2.

• Hierarchical clustering is usually based on factor projections, if desired using a

limited number of factors (e.g. 7) in order to filter out the most useful

information in our data.

• In such a case, hierarchical clustering can be seen to be a mapping of Euclidean

distances into ultrametric distances.
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Summary

• Correspondence analysis displays observation profiles in a low-dimensional

factorial space.

• Profiles are points endowed with χ2 distance.

• Under appropriate circumstances, the χ2 distance reduces to a Euclidean

distance.

• A factorial space is nearly always Euclidean.

• Simultaneously a hierarchical clustering is built using the observation profiles.

• Usually one or a small number of partitions are derived from the hierarchical

clustering.

• A hierarchical clustering defines an ultrametric distance.

• Input for the hierarchical clustering is usually factor projections.
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• In summary, correspondence analysis involves mapping a χ2 distance into a

particular Euclidean distance; and mapping this Euclidean distance into an

ultrametric distance.

• The aim is to have different but complementary analytic tools to facilitate

interpretation of our data.
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Hierarchical Cluster Analysis

Topics:

• Part 2: Hierarchical agglomerative cluster analysis. Using metric embedding.

• Example: globular cluster study (PCA and clustering).

• Metric and distance.

• Hierarchical agglomerative clustering.

• Single link, minimum variance criterion.

• Graph methods – minimal spanning tree, Voronoi diagram
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Cluster Analysis

Some Terms

• Unsupervised classification, clustering, cluster analysis, automatic

classification. Versus: Supervised classification, discrimant analysis, trainable

classifier, machine learning.

• For clustering we will consider (i) partitioning methods, (ii) agglomerative

hierarchical classification, (iii) graph methods, (iv) statistical methods, or

distribution mixture models.

• For discrimination one can consider consider (i) multiple discriminant analysis

(geometric), (ii) nearest neighbour discriminant analysis, (iii) neural networks –

multilayer perceptron, (iv) machine learning methods, and (v) classification

trees.

• Note that principal components analysis, correspondence analysis, or indeed

visualization display methods, can be used as a basis for clustering.
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Example: analysis of globular clusters

• M. Capaccioli, S. Ortolani and G. Piotto, “Empirical correlation between

globular cluster parameters and mass function morphology”, AA, 244,

298–302, 1991.

• 14 globular clusters, 8 measurement variables.

• Data collected in earlier CCD (digital detector) photometry studies.

• Pairwise plots of the variables.

• PCA of the variables.

• PCA of the objects (globular clusters).
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Object t_rlx Rgc Zg log(M/ c [Fe/H] x x0

years Kpc Kpc M.)

M15 1.03e+8 10.4 4.5 5.95 2.54 -2.15 2.5 1.4

M68 2.59e+8 10.1 5.6 5.1 1.6 -2.09 2.0 1.0

M13 2.91e+8 8.9 4.6 5.82 1.35 -1.65 1.5 0.7

M3 3.22e+8 12.6 10.2 5.94 1.85 -1.66 1.5 0.8

M5 2.21e+8 6.6 5.5 5.91 1.4 -1.4 1.5 0.7

M4 1.12e+8 6.8 0.6 5.15 1.7 -1.28 -0.5 -0.7

47 Tuc 1.02e+8 8.1 3.2 6.06 2.03 -0.71 0.2 -0.1

M30 1.18e+7 7.2 5.3 5.18 2.5 -2.19 1.0 0.7

NGC 6397 1.59e+7 6.9 0.5 4.77 1.63 -2.2 0.0 -0.2

M92 7.79e+7 9.8 4.4 5.62 1.7 -2.24 0.5 0.5

M12 3.26e+8 5.0 2.3 5.39 1.7 -1.61 -0.4 -0.4

NGC 6752 8.86e+7 5.9 1.8 5.33 1.59 -1.54 0.9 0.5

M10 1.50e+8 5.3 1.8 5.39 1.6 -1.6 0.5 0.4

M71 8.14e+7 7.4 0.3 4.98 1.5 -0.58 -0.4 -0.4
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6 8 10 12

•

•• •
•
• •

•
•

•

•

•
•

• •

•• •
•

• •

•
•

•

•

•
•

•

4.8 5.2 5.6 6.0

•

• • •
•

• •

•
•

•

•

•
•

• •

•• •
•

• •

•
•

•

•

•
•

•

-2.0 -1.5 -1.0

•

• •• •
• •

•
•

•

•

•
•

• •

••••
• •

•
•

•

•

•
•

•

-0.5 0.5 1.0

17
18

19

•

•••
•

• •

•
•

•

•

•
•

•
6

8
10

12

• •
•

•

••
•

• •

•

•
• •

•
R_gc

• •
•

•

••
•

••

•

•
••

•

••
•

•

••
•

••

•

•
••

•

••
•

•

• •
•

••

•

•
••

•

••
•

•

• •
•

••

•

•
••

•

••
•

•

••
•

••

•

•
••

•

••
•

•

••
•

••

•

•
••

•

•
•
•

•

•

•

•
•

•

•
•• •

•

•
•

•

•

•

•

•
•

•

•
• ••

•

Z_g •
•

•

•

•

•

•
•

•

•
•••

•

•
•

•

•

•

•

•
•

•

•
•••

•

•
•

•

•

•

•

•
•

•

•
•••

•

•
•

•

•

•

•

•
•

•

•
• ••
• 0

2
4

6
8

10

•
•

•

•

•

•

•
•

•

•
• ••
•

4.
8

5.
4

6.
0

•

•

•
••

•

•

•

•

•
•• •

•

•

•

•
••

•

•

•

•

•
• ••

•

•

•

•
••

•

•

•

•

•
•••

•

log(mass)

•

•

•
••

•

•

•

•

•
•••

•

•

•

•
• •

•

•

•

•

•
•••

•

•

•

•
••

•

•

•

•

•
• ••

•

•

•

•
••

•

•

•

•

•
• ••

•

•

•
•

•

•

•

•

•

• • •
• ••

•

•
•

•

•

•

•

•

• ••
•• •

•

•
•

•

•

•

•

•

• ••
•••

•

•
•

•

•

•

•

•

• ••
•••

c

•

•
•

•

•

•

•

•

•• •
•• •

•

•
•

•

•

•

•

•

• ••
•••

1.
4

1.
8

2.
2

•

•
•

•

•

•

•

•

• ••
•••

-2
.0

-1
.0

• •

••
•

•

•

• • •

•• •

•

••

• •
•
•

•

•• •

• ••

•

• •

• •
•

•

•

•• •

•••

•

••

• •
•

•

•

•• •

•••

•

••

• •
•

•

•

•• •

•••

•

[Fe/H]

••

••
•

•

•

•• •

• ••

•

••

••
•

•

•

•• •

• ••

•

•
•
•••

•

•

•

•
•

•

•
•

•

•
•

• ••

•

•

•

•
•

•

•
•

•

•
•

• ••

•

•

•

•
•

•

•
•

•

•
•

• ••

•

•

•

•
•

•

•
•

•

•
•

• ••

•

•

•

•
•

•

•
•

•

•
•

•• •

•

•

•

•
•

•

•
•

•

x

-0
.5

1.
0

2.
0

•
•

•••

•

•

•

•
•

•

•
•

•

17 18 19

-0
.5

0.
5

•
•
•••

•

•

•

•

•

•

• •

•

•
•

• ••

•

•

•

•

•

•

••

•

0 2 4 6 8 10

•
•

• ••

•

•

•

•

•

•

••

•

•
•

• ••

•

•

•

•

•

•

••

•

1.4 1.8 2.2

•
•

• ••

•

•

•

•

•

•

••

•

•
•

•• •

•

•

•

•

•

•

••

•

-0.5 0.5 1.5 2.5

•
•

•••

•

•

•

•

•

•

••

•

x_0



Lecture 1: Metric and Ultrametric Embedding. Slide 73/103.✬

✫

✩

✪

Principal plane (48%, 24% of variance)
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Principal plane (48%, 24% of variance)
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Metric and Ultrametric

• Triangular inequality:

Symmetry: d(a, b) = d(b, a)

Positive semi-definiteness: d(a, b) > 0, if a 6= b; d(a, b) = 0, if a = b

Triangular inequality: d(a, b) ≤ d(a, c) + d(c, b)

• Ultrametric inequality: d(a, b) ≤ max(d(a, c) + d(c, b))

• Minkowski metric: dp(a, b) = p

√

∑

j
| aj − bj |p p ≥ 1.

• Particular cases of the Minkowski metric: p = 2 gives Euclidean, p = 1 gives

Hamming or city-block; and = ∞ gives d∞(a, b) = maxj | aj − bj | which is

the “maximum coordinate” or Chebyshev distance.

• Also termed L2, L1, and L∞ distances.

• Question: show that squared Euclidean and Hamming distances are the same

for binary data.
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Single Linkage Hierarchical Clustering

Dissimilarity matrix defined for 5 objects

1 2 3 4 5 1 2U4 3 5

--+-------------- ----+----------------

1 | 0 4 9 5 8 1 | 0 4 9 8

2 | 4 0 6 3 6 2U4 | 4 0 6 5

3 | 9 6 0 6 3 3 | 9 6 0 3

4 | 5 3 6 0 5 5 | 8 5 3 0

5 | 8 6 3 5 0

Agglomerate 2 and 4 at Agglomerate 3 and 5 at

dissimilarity 3 dissimilarity 3
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Single Linkage Hierarchical Clustering – 2

1 2U4 3U5 1U2U4 3U5

----+--------------- ------+-------------

1 | 0 4 8 1U2U4 | 0 5

2U4 | 4 0 5 3U5 | 5 0

3U5 | 8 5 0

Agglomerate 1 and 2U4 at Finally agglomerate 1U2U4

dissimilarity 4 and 3U5 at dissim. 5
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Single Linkage Hierarchical Clustering – 3

Resulting dendrogram r c

|

|

+----------+ ... 4 ... 5

| |

+-----+ | ... 3 ... 4

| | |

| | +---+ ... 2 ... 3

| | | |

| +---+ | | ... 1 ... 3

| | | | |

| | | | | ... 0 ... 0

r = ranks or levels. c = criterion values (linkage wts).
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Single Linkage Hierarchical Clustering – 3

Input An n(n− 1)/2 set of dissimilarities.

Step 1 Determine the smallest dissimilarity, dik.

Step 2 Agglomerate objects i and k: i.e. replace them with a new object, i ∪ k;

update dissimilarities such that, for all objects j 6= i, k:

di∪k,j = min {dij , dkj}.

Delete dissimilarities dij and dkj , for all j, as these are no longer used.

Step 3 While at least two objects remain, return to Step 1.
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Single Linkage Hierarchical Clustering – 4

• Precisely n− 1 levels for n objects. Ties settled arbitrarily.

• Note single linkage criterion.

• Disadvantage: chaining. “Friends of friends” in the same cluster.

• Lance-Williams cluster update formula:

d(i ∪ j, k) = αid(i, k) + αjd(j, k) + βd(i, j) + γ | d(i, k)− d(j, k) | where

coefficients αi, αj , β, and γ define the agglomerative criterion.

• For single link, αi = 0.5, β = 0 and γ = −0.5.

• These values always imply: min{dik, djk}

• Ultrametric distance, δ, resulting from the single link method is such that

δ(i, j) ≤ d(i, j) always. It is also unique (with the exception of ties). So single

link is also termed the subdominant ultrametric method.
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Other Hierarchical Clustering Criteria

• Complete link: substitute max for min in single link.

• Complete link leads to compact clusters.

• Single link defines the cluster criterion from the closest object in the cluster.

Complete link defines the cluster criterion from the furthest object in the cluster.

• Complete link yields a minimal superior ultrametric. Unfortunately this is not

unique (as is the maximal inferior ultrametric, or subdominant ultrametric).

• Other criteria define d(i ∪ j, k) from the distance between k and something

closer to the mean of i and j. These criteria include the median, centroid and

minimum variance methods.

• A problem that can arise: inversions in the hierarchy. I.e. the cluster criterion

value is not monotonically increasing. That leads to cross-overs in the

dendrogram.
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• Of the above agglomerative methods, the single link, complete link, and

minimum variance methods can be shown to never allow inversions. They

satisfy the reducibility property.
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Hierarchical Lance and Williams Coordinates Dissimilarity

clustering dissimilarity of centre of between cluster

methods (and update formula. cluster, which centres gi and gj .

aliases). agglomerates

clusters i and j.

Single link αi = 0.5

(nearest β = 0

neighbour). γ = −0.5

(More simply:

min{dik, djk})

Complete link αi = 0.5

(diameter). β = 0

γ = 0.5

(More simply:

max{dik, djk})

Group average αi =
|i|

|i|+|j|

(average link, β = 0

UPGMA). γ = 0
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Hierarchical Lance and Williams Coordinates Dissimilarity

clustering dissimilarity of centre of between cluster

methods (and update formula. cluster, which centres gi and gj .

aliases). agglomerates

clusters i and j.

Median method αi = 0.5 g =
gi+gj

2 ‖gi − gj‖
2

(Gower’s, β = −0.25

WPGMC). γ = 0

Centroid αi =
|i|

|i|+|j|
g =

|i|gi+|j|gj

|i|+|j|
‖gi − gj‖

2

(UPGMC). β = −
|i||j|

(|i|+|j|)2

γ = 0

Ward’s method αi =
|i|+|k|

|i|+|j|+|k|
g =

|i|gi+|j|gj

|i|+|j|
|i||j|

|i|+|j|
‖gi − gj‖

2

(minimum var- β = −
|k|

|i|+|j|+|k|

iance, error γ = 0

sum of squares.
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Agglomerative Algorithm Based on Data

(i.e. directly on data, rather than directly on dissimilarities

Step 1 Examine all interpoint dissimilarities, and form cluster from two closest

points.

Step 2 Replace two points clustered by representative point (centre of gravity) or by

cluster fragment.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all

objects are in one cluster.
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Agglomerative Algorithm Based on Dissimilarities

Step 1 Form cluster from smallest dissimilarity.

Step 2 Define cluster; remove dissimilarity of agglomerated pair. Update

dissimilarities from cluster to all other clusters/singletons.

Step 3 Return to Step 1, treating clusters as well as remaining objects, until all

objects are in one cluster.
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Example of Similarities

• Jaccard coefficient for binary vectors a and b. N is counting operator:

s(a, b) =
N j(aj=bj=1)

Nj(aj=1)+Nj(bj=1)−Nj(aj=bj=1)

• Jaccard similarity coefficient of vectors (10001001111) and (10101010111) is

5/(6 + 7− 5) = 5/8. In vector notation: s(a, b) = a
′
b

a′a+b′b−a′b
.

• Note: max sim. value - sim. = dissim.

• Jaccard coefficient uses counts of presence/absences in cross-tabulation of

binary presence/absence vectors:

| | a/present a/absent |

|-----------+--------------------+

| b/present | n1 n2 |

| b/absent | n3 n4 |

• A number of such measures have been used in information retrieival, or

numerical taxonomy: Jaccard, Dice, Tanimoto, ...
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• Another example based on coding of data:

Record x: S1, 18.2, X

Record y: S1, 6.7, —

Two records (x and y) with three variables (Seyfert type, magnitude, X-ray

emission) showing disjunctive coding.

Seyfert type spectrum Integrated magnitude X–ray data?

S1 S2 S3 — ≤ 10 > 10 Yes

x 1 0 0 0 0 1 1

y 1 0 0 0 1 0 0



Lecture 1: Metric and Ultrametric Embedding. Slide 90/103.✬

✫

✩

✪

Minimum variance agglomeration

• For Euclidean distance inputs, the following definitions hold for the minimum

variance or Ward error sum of squares agglomerative criterion.

• Coordinates of the new cluster center, following agglomeration of q and q′,

where mq is the mass of cluster q defined as cluster cardinality, and (vector) q

denotes using overloaded notation the center of (set) cluster q:

q′′ = (mqq +mq′q
′)/(mq +mq′).

• Following the agglomeration of q and q′, we define the following dissimilarity:

(mqmq′)/(mq +mq′)‖q − q′‖2.

• Hierarchical clustering is usually based on factor projections, if desired using a

limited number of factors (e.g. 7) in order to filter out the most useful

information in our data.

• In such a case, hierarchical clustering can be seen to be a mapping of Euclidean

distances into ultrametric distances.
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Efficient NN chain algorithm

sssss

edcba

✲ ✲ ✲✛

• A NN-chain (nearest neighbour chain)
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Efficient NN chain algorithm (cont’d.)

• An NN-chain consists of an arbitrary point followed by its NN; followed by the

NN from among the remaining points of this second point; and so on until we

necessarily have some pair of points which can be termed reciprocal or mutual

NNs. (Such a pair of RNNs may be the first two points in the chain; and we

have assumed that no two dissimilarities are equal.)

• In constructing a NN-chain, irrespective of the starting point, we may

agglomerate a pair of RNNs as soon as they are found.

• Exactness of the resulting hierarchy is guaranteed when the cluster

agglomeration criterion respects the reducibility property.

• Inversion impossible if: d(i, j) < d(i, k) or d(j, k) ⇒ d(i, j) < d(i ∪ j, k)
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Minimum variance method: properties

• We seek to agglomerate two clusters, c1 and c2, into cluster c such that the

within-class variance of the partition thereby obtained is minimum.

• Alternatively, the between-class variance of the partition obtained is to be

maximized.

• Let P and Q be the partitions prior to, and subsequent to, the agglomeration; let

p1, p2, . . . be classes of the partitions.

P = {p1, p2, . . . , pk, c1, c2}
Q = {p1, p2, . . . , pk, c}.

• Total variance of the cloud of objects in m-dimensional space is decomposed

into the sum of within-class variance and between-class variance. This is

Huyghen’s theorem in classical mechanics.

• Total variance, between-class variance, and within-class variance are as follows:
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V (I) = 1
n

∑

i∈I
(i− g)2, V (P ) =

∑

p∈P

|p|
n
(p− g)2; and

1
n

∑

p∈P

∑

i∈p
(i− p)2.

• For two partitions, before and after an agglomeration, we have respectively:

V (I) = V (P ) +
∑

p∈P

V (p)

V (I) = V (Q) +
∑

p∈Q

V (p)

• From this, it can be shown that the criterion to be optimized in agglomerating c1

and c2 into new class c is:

V (P )− V (Q) = V (c)− V (c1)− V (c2)

= |c1| |c2|
|c1|+|c2|‖c1 − c2‖2 ,
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Graph Methods
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Minimal Spanning Tree

Step 1 Select an arbitrary point and connect it to the least dissimilar neighbour.

These two points constitute a subgraph of the MST.

Step 2 Connect the current subgraph to the least dissimilar neighbour of any of the

members of the subgraph.

Step 3 Loop on Step 2, until all points are in the one subgraph: this, then, is the

MST.
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Minimal Spanning Tree of 14 Points
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Voronoi Diagram

• M. Ramella, W. Boschin, D. Fadda and M. Nonino, Finding galaxy clusters

using Voronoi tessellations, A&A 368, 776-786 (2001)

• For lots on Voronoi diagrams: http://www.voronoi.com/cgi-bin/

display.voronoi applications.php?cat=Applications

• Voronoi diagram: for given points i, we define the Voronoi cell or region of i as

{x|d(x, i) ≤ d(x, i′)} ∀i′.

• Delaunay triangulation: perpendicular bisectors of Voronoi boundaries.

• Theorem: MST ⊂ Delaunay triangulation.
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Voronoi Diagram

Some galaxies shown.
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Partitioning

Iterative optimization algorithm for the variance criterion

Step 1 Arbitrarily define a set of k cluster centres.

Step 2 Assign each object to the cluster to which it is closest (using the Euclidean

distance, d2(i, p) = ‖i− p‖2 ).

Step 3 Redefine cluster centres on the basis of the current cluster memberships.

Step 4 If the totalled within class variances is better than at the previous iteration,

then return to Step 2.
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Partitioning – Properties

• Sub-optimal.

• Dependent on initial cluster centres.

• The two main steps define the EM algorithm. “Expectation”: determine mean;

“Maximization”: assignment step.

• Widely used (since computational cost of hierarchical clustering is usually

O(n2)).


